Rigid Lattices Are Mordell-weil
نویسنده
چکیده
We say a lattice Λ is rigid if it its isometry group acts irreducibly on its ambient Euclidean space. We say Λ is Mordell-Weil if there exists an abelian variety A over a number field K such that A(K)/A(K)tor, regarded as a lattice by means of its height pairing, contains at least one copy of Λ. We prove that every rigid lattice is Mordell-Weil. In particular, we show that the Leech lattice can be realized inside the Mordell-Weil group of an elliptic curve over a number field.
منابع مشابه
On Mordell-Weil Lattices of Higher Genus Fibrations on Rational Surfaces
We will give an upper bound of Mordell-Weil rank r for relatively minimal brations of curves of genus g 1 on rational surfaces. Under the assumption that a bration is not locally trivial, we have r 4g+4. Moreover the maximal case (r = 4g + 4) will be studied in detail. We determine the structure of such brations and also the structure of their Mordell-Weil lattices introduced by Shioda.
متن کاملA rigid analytic Gross-Zagier formula and arithmetic applications
1 Gross’ formula for special values of L-series . . . . . . . . . . . . . . . 4 2 Bad reduction of Shimura curves . . . . . . . . . . . . . . . . . . . 5 3 Heegner points and connected components . . . . . . . . . . . . . . . 7 4 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 A rigid analytic Gross-Zagier formula . . . . . . . . . . . . . . . . 11 6 Kolyvagin cohomolog...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملThree lectures on elliptic surfaces and curves of high rank
Three lectures on elliptic surfaces and curves of high rank Noam D. Elkies Over the past two years we have improved several of the (Mordell–Weil) rank records for elliptic curves over Q and nonconstant elliptic curves over Q(t). For example, we found the first example of a curve E/Q with 28 independent points P i ∈ E(Q) (the previous record was 24, by R. Martin and W. McMillen 2000), and the fi...
متن کاملAn elliptic surface related to sums of consecutive squares
The theory of Mordell-Weil lattices is applied to a specific example of a rational elliptic surface. This provides a complete description of the sections of this surface, and of the sections which are defined over Q. The surface is related to the diophantine problem of expressing squares as a sum of consecutive squares. Some consequences which our description has to this problem are discussed.
متن کامل